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The so-called Crocco integral establishes a relation between the velocity and temper-
ature distributions in steady boundary layer flow. It corresponds to an exact solution
of the flow equations in the case of unity Prandtl number and an adiabatic wall,
where it reduces to the condition that the total enthalpy remains constant throughout
the boundary layer, irrespective of pressure gradient and compressibility. The effect
of Prandtl number is usually incorporated by assuming a constant recovery factor
across the entire boundary layer. Strictly, however, this modification is in conflict with
the conservation-of-energy principle. In search of a more complete expression for the
Crocco integral the present study applies an asymptotic solution approach to the
energy equation in constant-property flow. The analysis of self-similar boundary layer
solutions results in a formulation of the Crocco integral which correctly incorporates
the effect of Prandtl number to first order, and that is complete in the sense that
it satisfies the energy conservation requirement. Furthermore, the result is found to
be applicable not only to self-similar boundary layers, but also to provide a solution
to the laminar flow equations in general as well. The effect of varying properties is
considered with regard to the extension of the expression to more general flow con-
ditions. In addition to the asymptotic expression for the Crocco integral, asymptotic
solutions are also obtained for the recovery factor for various classes of flows.

1. Introduction
Owing to the similarity in the phenomena that provide the transport of momentum

and heat in a boundary layer flow, a close link exists between the flow velocity and
the local enthalpy in the flow. This is expressed by the so-called Crocco(–Busemann)
relation or the Crocco integral, in acknowledgement of the pioneering work which L.
Crocco (1932) performed in the field of thermal effects in boundary layer flow. Such a
relationship has great practical significance, both for experimental purposes where it
can provide temperature information where such is not explicitly available (Crabtree
1954; Fernholz & Finley 1980; Motallebi 1994), as well as in numerical studies in
which the temperature can be obtained from an algebraic relation rather than having
to solve the energy transport equation (Lindhout et al. 1981; Kiss & Schetz 1993).

Following the original work by Crocco, the subject of heat transfer in laminar
boundary layer flows has received much attention. In this respect it is important
to refer to the large body of analytical studies that appeared in the 1950s and
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1960s. In particular the treatment of the Falkner–Skan boundary layers in constant-
property flow and the flat-plate boundary layer in compressible flow, where similarity
is obtained in both the velocity and temperature distributions, has laid the theoretical
basis for the understanding of aspects such as heat transfer and enthalpy recovery, and
the effect of pressure gradient, Prandtl number and compressibility. Good overviews of
the major findings of these studies have been given by Stewartson (1964), Schlichting
(1979), Anderson (1989), White (1991) and Schlichting & Gersten (1997), whereas
Fernholz & Finley (1980) and Dussauge et al. (1996) have given a renewed account
of the Crocco relation in connection with compressible turbulent flows.

The derivation of the original Crocco integral relation can be found in standard
textbooks, such as the sources mentioned above. Basically, for steady two-dimensional
boundary layer flow over a stationary and impermeable wall it holds that at unity
Prandtl number Pr and either zero pressure gradient or adiabatic wall conditions,
the temperature (throughout this study described in terms of the enthalpy h) can be
expressed as a function of the main velocity component u, for any arbitrary viscosity
function µ(T ):

h = he + (haw − he)
(

1− u2

u2
e

)
+ (hw − haw)

(
1− u

ue

)
(1.1)

where the subscripts w and e refer to conditions at the wall surface and in the
(adiabatic) external stream, respectively; haw is the enthalpy corresponding to the
adiabatic wall temperature:

haw = he + r 1
2
u2
e . (1.2)

The above expression defines the recovery factor r, which is equal to 1 in the case
of unity Prandtl number. Restricting the further discussion in this paper to the case
of zero heat transfer, the Crocco integral then reduces for Pr = 1 to the condition
that the total enthalpy H = h+ 1

2
u2 remains constant over the entire boundary layer

thickness.

Based on the work of Van Driest (1952) and Walz (1966), who extended Crocco’s
analysis of the flat plate to arbitrary Prandtl number, the effect of Pr is commonly
incorporated by applying a direct generalization of (1.1). This corresponds to the
assumption that a constant recovery factor can be applied throughout the entire
boundary layer, also in the case where r differs from 1, so that for an adiabatic
wall:

h = he + r 1
2
(u2
e − u2) (1.3)

which implies:

H = He + (r − 1) 1
2
(u2
e − u2). (1.4)

The value of r is based on the temperature recovery at the wall, and derived from
theoretical studies of self-similar boundary layers in constant-property flow to be ap-
proximately r = Pr1/2 for laminar flow, irrespective of pressure gradient (Pohlhausen
1921; Tifford & Chu 1952; Brun 1956; Le Fur 1960; Schlichting 1979), which was con-
firmed analytically and experimentally to be a viable approximation for compressible
flow as well (Kaye 1954; Van Driest 1959).

A serious objection to this modification of the Crocco integral, however, is that the
resulting enthalpy distribution violates the conservation-of-energy principle. This is
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reflected by the integral energy balance which for a steady two-dimensional flow with
constant He over a stationary, impermeable wall is

∂

∂x

∫ δ

0

ρu(H −He)dy = qw(x), (1.5)

where x is measured along the surface in the direction of the external stream and y is
the distance to the wall. In the absence of surface heat transfer (qw = 0) this reduces
to: ∫ δ

0

ρu(H −He)dy = 0. (1.6)

This local integral energy condition is clearly not satisfied in general by equation (1.4),
apart from the trivial case when r = 1. The reduction of the total enthalpy near the
wall due to the incomplete heat recovery (for realistic gases where Pr < 1), is balanced
by a flow region near the outer flow where H > He, an effect which is not reproduced
by an expression of the type (1.3).

Although this defect has been reported already by e.g. Schubauer & Chen (1959),
the author knows of no attempt to modify the Crocco integral accordingly, at least
not in a systematic and rigorous manner (cf. also Fernholz & Finley 1980). Schubauer
& Chen (1959) proposed the use of a variable recovery factor; however, they did
not suggest how it could be implemented. This approach would involve unrealistic
recovery values occurring in the outer region of the boundary layer, which does not
provide a correct description of the underlying physical mechanism: the overshoot in
the total temperature is not due to a variation of the heat recovery, but is caused
by additional heat transport in the flow, as will be shown in §3.1. Hence, the highly
empirical and ad hoc nature of such a modification would probably make it of only
very limited use.

For the case of turbulent flat-plate flow, Whitfield & High (1977) derived a modified
velocity–temperature relation for non-unity Prandtl numbers, allowing the description
of total temperature overshoot. It was obtained from the zeroth- and first-order
perturbation solution, for Pr near 1, of the Crocco-transformed energy equation (i.e.
with u as independent variable), by prescribing the relation between the shear stress
and velocity profile. This allowed them to succesfully reproduce experimental total
temperature data, but the validity of the expression is evidently limited to a single,
specific class of flows, namely that of (turbulent) zero-pressure-gradient flows in near
equilibrium.

The purpose of the present study is to derive a general, modified expression
for the (laminar) Crocco integral under the condition that Pr differs from 1,
that is in correspondence with physical conservation principles. Similar to the
approach followed by Whitfield & High (1977), an asymptotic analysis is per-
formed for Pr near 1, but here it is applied directly to the complete laminar
flow equations, and without making any additional assumptions about the flow
field.

First, consideration is given to self-similar solutions of the constant-property two-
dimensional boundary layer equations. Next, the extension to more general conditions
is addressed. As a side product of this investigation of the Crocco integral, asymptotic
expressions are also obtained for the Prandtl-number dependence of the recovery
factor for various classes of flows.
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2. Self-similar boundary layers in constant-property flow
2.1. Governing equations

The momentum and energy equations governing the steady two-dimensional laminar
boundary layer flow with respect to the Cartesian coordinate frame (x, y), with (u, v)
the corresponding velocity components and p the pressure, are given by

ρu
∂u

∂x
+ ρv

∂u

∂y
= −dp

dx
+

∂

∂y
µ
∂u

∂y
, (2.1)

ρu
∂h

∂x
+ ρv

∂h

∂y
= u

dp

dx
+ µ

(
∂u

∂y

)2

+
∂

∂y

µ

Pr

∂h

∂y
. (2.2)

An adiabatic external flow is assumed so that dp/dx = −ρeuedue/dx = ρedhe/dx.
Throughout the present study constant specific heat and Prandtl number are assumed.
If in addition the density ρ and viscosity µ are constant, self-similar solutions can be
obtained, where the non-dimensional velocity and enthalpy distributions are functions
only of the scaled transverse coordinate η:

f′(η) =
u

ue
, θ(η) =

h− he
1
2
u2
e

, η = y

(
m+ 1

2

ρue

µx

)1/2

. (2.3)

The requirement for similarity is a constant value of the pressure-gradient parameter
m = (x/ue)due/dx, implying that the external stream velocity varies as ue ∼ xm

(wedge flow). This transformation reduces the governing equations to a set of ordinary
differential equations (see e.g. Schlichting 1979):

f′′′ + ff′′ + β(1− f′2) = 0, (2.4)

θ′′ + Prfθ′ − 2Prβf′θ = −2Prf′′2, (2.5)

where β = 2m/(m + 1) and with boundary conditions f(0) = f′(0) = 0, f′(∞) = 1,
θ(∞) = 0 and θ′(0) = 0 for a thermally isolated wall. Owing to the assumption of
constant-property flow the f-equation is decoupled from the the energy equation,
whereas the latter is linear in θ.

The solution for Pr = 1 is given by θ = 1− f′2, which corresponds directly to (1.3)
with r = 1. As discovered by Pohlhausen (1921), the solution for θ with arbitrary Pr
can be formulated analytically in the case of the flat plate (β = 0), with numerical
evaluation yielding that the effect of Pr on the recovery factor can be approximated
as r = Pr1/2. The second-order term in the asymptotic expansion of the dependence
of r on Pr was considered by Spence (1960).

Numerical solutions investigating the effect of Pr and β indicated the square-root
dependence of r on Pr to be approximately independent of pressure gradient (Tifford
& Chu 1952; Brun 1956). This was supported by the analysis of Le Fur (1960), who
obtained an approximate expression for the recovery factor that is independent of
pressure gradient, from combining first-order subsequent-approximation solutions to
both the velocity and the temperature equation.

Further results of numerical solutions for several values of Pr and β can be found
in for example Gersten & Körner (1968). These also address the effect of a non-zero
normal velocity at the wall, which is excluded in the present discussion, revealing
among other things how with increasing suction the recovery factor tends towards
unity, irrespective of pressure gradient.

In addition, Herwig (1987) investigated the effect of compressibility and heat
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transfer on the wedge-flow solutions with varying properties, by deriving sensitivity
factors for various temperature dependencies from a first-order perturbation of the
constant-property solution, again for given Prandtl number Pr and wedge parameter
m values (see also Schlichting & Gersten 1997).

In the following subsections an asymptotic solution approach is applied to the
similarity equations, in order to investigate in more detail the effect of Pr on the
solution, with particular emphasis placed on the relation between the velocity and
enthalpy solutions.

2.2. Asymptotic solution approach

To study the effect of Prandtl number on the solution of the energy equation for Pr
different from unity, the enthalpy is expresed as an asymptotic series:

θ(η) = θ0(η) + εθ1(η) + ε2θ2(η) + ... (2.6)

with respect to the perturbation parameter ε = Pr− 1. Substitution of the series into
(2.5) and collecting equal powers of ε, yields the following set of equations:

θ′′0 + fθ′0 − 2βf′θ0 = −2f′′2, (2.7)

θ′′1 + fθ′1 − 2βf′θ1 = θ′′0 , (2.8)

θ′′2 + fθ′2 − 2βf′θ2 = θ′′1 − θ′′0 , (2.9)

or, in general (for i > 1)

θ′′i + fθ′i − 2βf′θi = Gi (2.10)

where Gi = θ′′i−1 − Gi−1. For each function the same boundary conditions θ′i(0) = 0
and θi(∞) = 0 apply. From (2.6) the recovery factor r follows as

r = θ(0) = θ0(0) + εθ1(0) + ε2θ2(0) + . . . = c0(m) + εc1(m) + ε2c2(m) + . . . (2.11)

with the coefficients ci in general depending on the pressure-gradient parameter m.
Since θ(η) represents an exact solution of the energy equation, it naturally satisfies

the integral condition (1.6). The same therefore holds for the asymptotic series of
(2.6) for any ε for which it converges. As it does so for arbitrary values of Pr, it can
be concluded that any truncation of the series satisfies the integral condition as well.

The zero-order solution is identical to the solution of the original problem with
Pr = 1, so that in correspondence with the original Crocco integral relation

θ0 = 1− f′2 (2.12)

which, upon substitution in (2.8) yields the first-order problem as

θ′′1 + fθ′1 − 2βf′θ1 = −2(f′′2 + f′f′′′) = −2(f′f′′)′. (2.13)

For the flat plate (β = 0) the problem is particularly easy to solve, as in that case
θ1 = f′ is directly recognized as a solution of the homogeneous equation (as it is for
every θi), allowing the solution to the non-homogeneous equation to be obtained by
the method of variation of parameters. The solution for θ1 is found as

θ1 = 1
2
(1− f′2)− ff′′. (2.14)

Substitution of this expression in (2.13) reveals that, remarkably, this satisfies for
general β as well. The second-order solution can also be derived explicitly for the
flat-plate case, but does not possess the same universal validity for arbitrary β as does
the first-order solution.
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θ(0)
f′′(0) (Pr = 0.7) c0 c1 c2 c3 c4

m = −0.0904 0.0071 0.8359 1.0000 0.5000 −0.1331 0.0641 −0.0389
m = −0.075 0.1849 0.8358 1.0000 0.5000 −0.1338 0.0646 −0.0392
m = −0.05 0.3098 0.8358 1.0000 0.5000 −0.1342 0.0651 −0.0396
m = 0 0.4696 0.8357 1.0000 0.5000 −0.1345 0.0655 −0.0399
m = 0.5 1.0389 0.8359 1.0000 0.5000 −0.1348 0.0661 −0.0404
m = 1 1.2326 0.8360 1.0000 0.5000 −0.1349 0.0661 −0.0404

r = Pr1/2 0.8367 1 1/2 −1/8 1/16 −0.0391
Spence (1960) 0.8357 1 1/2 −0.1345
Le Fur (1960) 0.835 1 1/2 −1/7 1/14

Table 1. Enthalpy recovery in constant-property similar boundary layer flow. Numerical results
are obtained with step size ∆η = 0.02 and ηmax = 10.

A short numerical investigation was made, with the purpose of obtaining solu-
tions to the complete θ-equation for a given value of Pr, as well as for evaluating
the different functions θi(η) that feature in the asymptotic approach. A five-point
equidistant finite-difference scheme with fourth-order accuracy was employed, that
solves a second-order linear differential equation by a modified version of the Thomas
algorithm (cf. Schetz 1993); the nonlinear f-equation is solved iteratively by subse-
quent approximations. The boundary conditions pertaining to the external stream are
applied at a finite value ηmax that is taken sufficiently large so as to ensure that the
solution does not depend on it within numerical accuracy.

Results for different values of the pressure-gradient parameter m are given in table 1.
Note that in the light of the previous analytical findings the first two coefficients in
(2.11) are independent of m, with c0 = 1 and c1 = 1

2
. The subsequent coefficients show

only a very weak dependence on m. Also included in the table are the coefficients of
the expansion of the common approximation r = Pr1/2, the second term for the flat
plate as derived by Spence (1960) which is seen to agree with the present data for
m = 0, as well as the coefficients obtained by Le Fur (1960).

Profiles of the scaled distributions of velocity, enthalpy and total enthalpy are
shown in figure 1, for flat-plate, stagnation and separation flow (m = 0, m = 1 and
m = −0.0904, respectively) with Pr = 0.7. In the figure the numerical results of the
enthalpy distribution are compared to the predictions of the Crocco integral with
either the classic modification of (1.3), or with the present result as given by (3.3). To
improve correspondence with the numerical results, in both Crocco integral methods
the recovery factor is taken as r = Pr1/2, as a representation of the higher-order
Prandtl-number effects on r.

Clearly the improved prediction that the extended Crocco integral provides of the
static and total enthalpy in comparison to the standard modification can be seen, in
particular the overshoot of H in the outer region of the boundary layer is correctly
modelled.

3. Generalization of the results
3.1. Interpretation in dimensional properties

Returning to dimensional properties, and with substitution of the results that were
obtained for the first two terms θ0 and θ1 of (2.6), the Crocco integral and recovery
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Figure 1. Boundary layer profiles of velocity, enthalpy and total enthalpy (θtot = θ + f′2) for
constant-property self-similar flow. (a) Flat-plate flow; (b) stagnation flow; (c) separation flow.
Solid line: numerical solution of the energy equation; short-dashed line: classic Crocco integral,
equation (1.3); long-dashed line: extended Crocco integral, equation (3.3).

factor are expressed explicit up to first order in ε as:

h = he + 1
2
(u2
e − u2) + 1

2
ε

(
1
2
(u2
e − u2)− ψ∂u

∂y

)
+ O(ε2), (3.1)

r = 1 + 1
2
ε+ O(ε2), (3.2)
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where ψ is the stream function defined by u = ∂ψ/∂y. After truncation of both
series by neglecting the O(ε2) terms and with subsequent elimination of ε, the relation
between the enthalpy and the velocity can be written alternatively as

h = he + r 1
2
(u2
e − u2)− (r − 1)ψ

∂u

∂y
(3.3)

or

H = He + (r − 1)

(
1
2
(u2
e − u2)− ψ∂u

∂y

)
. (3.4)

Comparison with the classic forms of the modified Crocco relation, see (1.3) and (1.4),
reveals that the latter incorporate only the first recovery part of the first-order term,
but that the second part that expresses the energy migration towards the outer flow
is absent in them.

As mentioned previously, being a truncated series of the exact solution, (3.4)
inherently satisfies the integral energy-conservation requirement of (1.6). It does so,
not only for the similar boundary layer flows for which it was derived, but also
in general, as can be confirmed from substitution of (3.4) in (1.6). Noting that∫
ρu3dy =

∫
ρu2dψ, the following result is obtained by means of partial integration:∫

0

ρu(H −He)dy = 1
2
(r − 1)ρψ(u2

e − u2), (3.5)

which indeed vanishes when the upper bound of the integration extends beyond the
boundary layer edge.

For the numerical solutions shown in figure 1 the Crocco relation is plotted in
figure 2 in the form of the scaled total-enthalpy defect,

H − hw
He − hw

=
θ + f′2 − θ(0)

1− θ(0)
, (3.6)

versus (u/ue)
2 = f′2, as suggested by the alternative form of (1.1) (Walz 1966; Bushnell

et al. 1969; Fernholz & Finley 1980):

H − hw
He − hw

=
He − haw
He − hw

(
u2

u2
e

)
+
haw − hw
He − hw

(
u

ue

)
. (3.7)

For an adiabatic wall the second term vanishes, so that accordingly the common
modification of the Crocco relation predicts a quadratic dependence on the velocity
and, hence, a linear relation between the variables of the figure, which is clearly not
in agreement here with the solutions of the similarity equations, cf. also Whitfield &
High (1977). Instead, with the present results of (3.4), we find

H − hw
He − hw

=
u2

u2
e

+
ψ

u2
e

∂u

∂y
. (3.8)

3.2. General constant-property flow

The observations in the previous subsection, together with the result that (3.3) is
valid for self-similar boundary layers irrespective of the value of the pressure-gradient
parameter m, suggest that it may possess an even more general validity. It can indeed
be verified that (3.1) represents a general solution to the energy equation, (2.2), in the
same asymptotic sense as considered previously for the self-similar boundary layers.
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Figure 2. Representation of total enthalpy defect in ‘Crocco variables’
(data are for Pr = 0.7 and ω = 0.75).

To show this, the asymptotic approach is applied directly to the enthalpy distribution:

h(x, y) = h0(x, y) + εh1(x, y) + ε2h2(x, y) + ... (3.9)

from which the zero-order problem is found to be

ρu
∂h0

∂x
+ ρv

∂h0

∂y
− ∂

∂y
µ
∂h0

∂y
= u

dp

dx
+ µ

(
∂u

∂y

)2

(3.10)

with solution h0 = he + 1
2
(u2
e − u2), as dictated by the universal validity of the Crocco

integral for Pr = 1. Consequently, the first-order problem is described by

ρu
∂h1

∂x
+ ρv

∂h1

∂y
− ∂

∂y
µ
∂h1

∂y
= − ∂

∂y
µ
∂h0

∂y
=

∂

∂y
µu
∂u

∂y
. (3.11)

To verify that, in accordance with (3.1), h1 = 1
4
(u2
e − u2) − 1

2
ψ∂u/∂y satisfies as a

solution, the following operator is evaluated:

F(h1) = ρu
∂h1

∂x
+ ρv

∂h1

∂y
− ∂

∂y
µ
∂h1

∂y
− ∂

∂y
µu
∂u

∂y
. (3.12)

After substitution of the expression for h1 given above, and with some manipulation,
the following identity is derived:

F(h1) = −1

2

(
ρu

∂

∂y
ψ
∂u

∂x
+ ρv

∂

∂y
ψ
∂u

∂y
− ρuue

due
dx
− ∂

∂y
µψ

∂2u

∂y2

)
, (3.13)

which, invoking the continuity equation and noting that u = ∂ψ/∂y, can be evaluated
as

F(h1) = −1

2

∂

∂y
ψ

(
ρu
∂u

∂x
+ ρv

∂u

∂y
− ρue

due
dx
− µ∂

2u

∂y2

)
≡ 0 (3.14)

which indeed vanishes as follows from the momentum equation (2.1), provided that
ρ and µ are invariant with y, which proves the correctness of the assumed solution
for h1.



322 B. W. van Oudheusden

4. Compressible flow
In the case of varying properties that occur in compressible flow, the possibility of

obtaining strict similarity is very limited (Li & Nagamatsu 1955; Stewartson 1964).
The reason for this is that, in addition to similarity in the enthalpy-defect function
θ, the dependence of density and viscosity on temperature requires similarity in the
enthalpy h itself as well (Anderson 1989). With the relation between h and θ being
given by

h

he
= 1 +

γ − 1

2
M2

e θ(η) (4.1)

this directly reveals that strict similarity in general can only be obtained when Me

is constant (flat-plate flow), or when compressibility effects are negligible, the latter
basically reducing the problem to that of constant-property flow which has been
addressed in the previous section. Alternatively, solutions with approximate similarity
can be obtained under certain restrictions (Li & Nagamatsu 1955), for heat-transfer-
dominated boundary layers (Chapman & Rubesin 1949) or assuming only local
similarity (Anderson 1989).

For mild compressibility effects the asymptotic approach can be extended by
introducing a second perturbation parameter εM = 1

2
(γ − 1)M2

e that expresses the
compressibility effect. The asymptotic series for h, equation (3.9), is then written

h(x, y) = h00(x, y) + εMh01(x, y) + . . .+ ε (h10(x, y) + εMh11(x, y) + . . .) + . . . . (4.2)

As a result of the coupling of momentum and energy equations due to the varying
properties, similar series expansions must now also be considered for the various
velocity components, like

u(x, y) = u00(x, y) + εMu01(x, y) + . . .+ ε (u10(x, y) + εMu11(x, y) + . . .) + . . . . (4.3)

Assuming constant specific heat, the variation of the properties µ and ρ are directly
coupled to the enthalpy by, respectively, the viscosity law and the equation of state,
with in the boundary layer the latter reducing to ρ/ρe = he/h.

The (00)-problem yields the basic solution for Pr = 1 and M = 0, while the (01)
and the (10) cases describe the first-order corrections for variations in M and Pr,
respectively. As the original Crocco integral for Pr = 1 is valid for variable properties
as well, it can directly be concluded that (4.2) with ε = 0 then reads h0 = he+

1
2
(u2
e−u2

0),
hence:

h00 = he + 1
2
(u2
e − u2

00), h01 = −u00u01. (4.4)

Furthermore, the (10)-problem describes the effect of Prandtl number in the absence
of compressibility effects (εM = 0), so the results of the previous section are directly
applicable here. In particular, we find that

u10 ≡ 0, h10 = 1
2

(
1
2
(u2
e − u2

00)−
Ψ00

ρ00

∂u00

∂y

)
, (4.5)

where the extra factor density has been included in view of the adapted definition
of the stream function Ψ in compressible flow, being ρu = ∂Ψ/∂y. Note that this
modification is also in agreement with the common feature of all compressibility
transformations used to reduce the flow equations to a nearly incompressible form
(Anderson 1989; White 1991; Schetz 1993), that a density-weighing is applied to the
transverse coordinate, hence directly suggesting that ∂y should be replaced by ρ∂y.

As a result, all relations established in §3.1 apply here as well with error O(εεM),
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that is, incorporating only first-order Pr and M effects separately. In particular the
generalization of the Crocco integral applies:

h = he + r 1
2
(u2
e − u2)− (r − 1)

Ψ

ρ

∂u

∂y
+ O(ε2, εεM, ε

2
M), (4.6)

r = 1 + 1
2
ε+ O(ε2, εεM, ε

2
M). (4.7)

4.1. Compressible flat-plate flow

In order to investigate the first-order combined effect described by the (11)-term,
the case of flat-plate flow is considered in more detail. As in this case a similarity
solution can be obtained, it is attractive for analytical treatment, and has received
this extensively. Special reference can be made to the work by Van Driest (1952,
1959), who numerically investigated the effect of Mach number and viscosity law
on velocity and temperature distributions, skin friction, heat transfer and recovery
factor, while including in the analysis the temperature dependence of specific heat and
Prandtl number. In particular, he showed that the recovery factor is not affected by
compressibility effects for a linear viscosity law µ ∝ T , but in general r is a function
of both Me and Te.

Application of a standard compressibility transformation by including the free-
stream properties µe, ρe and ue in the coordinate scaling, which becomes especially
simple for the flat-plate flow where these properties are constants, brings the similarity
equations into a nearly incompressible form (an extensive derivation is given in
Anderson 1989):

(Cf′′)′ + ff′′ = 0, (4.8)

(Cθ′)′ + Prfθ′ = −2PrCf′′2, (4.9)

which is identical to the incompressible form apart from the Chapman–Rubesin
function C = ρµ/ρeµe (Chapman & Rubesin 1949). For a general viscosity law the
solution is a function of both Me and Te, but when the viscosity is expressed as a
power law µ/µe = (T/Te)

ω , the effect of Te vanishes. The power-law function will
be employed here for convenience, and for the present purpose of investigating only
mild compressibility effects, it suffices in providing an approximate description of the
variation of µ over a limited temperature range. Under that assumption we obtain
for C

C = (h/he)
ω−1 = (1 + εMθ(η))ω−1, (4.10)

which for weak compressibility effects and/or ω near 1, can be approximated as

C = 1 + (ω − 1)εMθ(η). (4.11)

This shows that under these conditions an effective perturbation parameter for the
effect of compressibility can be defined as εm = (ω − 1)εM . When ω = 1 the com-
pressibility effects vanish completely from the problem as εm ≡ 0, which is obvious, as
C ≡ 1 makes the governing equations identical to their incompressible counterparts.
Hence, under these conditions the results of the constant-property flow as expressed
for example by (3.1) and (3.2) are directly applicable as well.

In figure 3 the results of calculations with ω = 0.75 for free-stream Mach numbers
Me of 1 and 2 are shown. The effect of Me on the validity of the Crocco relation
appears to be very small, as is further revealed by comparison with the constant-
property calculations, see also figure 1(a) and figure 2.
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Figure 3. Boundary layer profiles for compressible flat-plate flow. (a) Me = 1; (b) Me = 2. For line
styles see figure 1 (ω = 0.75).

For the case ω 6= 1 asymptotic series in both ε are εm are constructed for f and θ
as

f(η) = f00(η) + εmf01(η) + . . .+ ε (f10(η) + εmf11(η) + . . .) + . . . , (4.12)

θ(η) = θ00(η) + εmθ01(η) + . . .+ ε (θ10(η) + εmθ11(η) + . . .) + . . . . (4.13)

From the discussion in the previous section the solutions for θ00 and θ01 can directly
be expressed as follows:

θ00 = 1− f′200, θ01 = − 1
2
f′00f

′
01, (4.14)

where f00 satisfies the Blasius equation, f′′′00 + f00f
′′
00 = 0, while f01, the function

expressing the first-order compressibility effect on the velocity profile, is determined
by the following linear differential equation:

f′′′01 + f00f
′′
01 + f′′00f01 + (θ00f

′′
00)
′ = 0. (4.15)

Also, the solutions for f10 and θ10 are directly obvious from the constant-property
analysis, yielding

f10 ≡ 0, θ10 = 1
2
(1− f′200)− f00f

′′
00. (4.16)

while the (11)-problem is described by

f′′′11 + f00f
′′
11 + f′′00f11 + (θ10f

′′
00)
′ = 0, (4.17)
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Figure 4. Asymptotic functions for the velocity and enthalpy distribution in compressible
flat-plate flow.

θ′′11 + f00θ
′
11 + (θ10θ

′
00)
′ + (θ00θ

′
10)
′ + (f01 + f11)θ

′
00 + f01θ

′
10 + f00θ

′
01

+2(θ00 + θ10)f
′′2
00 + 4(f′′01 + f′′11)f

′′
00 = 0. (4.18)

The numerically obtained asymptotic functions for f′ and θ, applying to the series
expansions of the velocity and enthalpy distribution, have been depicted in figure
4. Table 2 contains the relevant values of f′′(0) and θ(0), which relate to the wall
shear stress and recovery factor, as well as results from the numerical solution for
several values of the external stream Mach number Me, for Pr = 1 and Pr = 0.7
(calculations are again for ω = 0.75). Figure 5 provides a comparison between the
numerical results and the predicted effect of Me on f′′(0) and r = θ(0), according to
the asymptotic solution

f′′(0) = f′′00(0) + εm
(
f′′01(0) + εf′′11(0)

)
, (4.19)

r = r0 + εmεθ11(0), (4.20)

where in the latter, instead of taking only the first-order expansion, r0 is fitted to
the result of the numerical solution for Me = 0, in order to observe the Me-effect
separately from the influence of Pr. Note especially the small variation of r with Me in
the prediction, and which is even smaller when the higher-order terms are included as
the numerical solutions show. This result is also in good agreement with the predicted
compressibility effect on r as derived by Herwig (1987) from a perturbation of the
constant-property solution for Pr = 0.7, see also Schlichting & Gersten (1997), which
yields for γ = 1.4

r = 0.836− 0.003(1− ω)M2
e , (4.21)

whereas the present results correspond to

r = r0 − 0.004(1− ω)M2
e . (4.22)

Apart from numerical accuracy, the differences are to be attributed to the fact that
the second expression is obtained from the perturbation of the constant-property
solution for Pr = 1, instead of Pr = 0.7.

The above results mainly serve to illustrate that the first-order effect of compress-
ibility on the constant-property analysis is not very large, at least not for the flat-plate
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Figure 5. Mach number effect on the scaled wall shear stress and recovery factor for flat-plate flow.
Symbols: numerical solution of the energy equation; solid line: prediction for Pr = 1; dashed line:
prediction for Pr = 0.7(ω = 0.75).

(a) Properties of asymptotic functions.

(00) (01) (10) (11)

f′′(0) 0.4696 −0.3113 0 0.1838
r = θ(0) 1 0 0.5 −0.0657

(b) Solutions for the original system of equations.
Me = 0 Me = 1 Me = 2 Me = 3 Me = 4

f′′(0) Pr = 0.7 0.4696 0.4813 0.5087 0.5404 0.5710
Pr = 1 0.4696 0.4839 0.5161 0.5522 0.5861

θ(0) Pr = 0.7 0.8357 0.8350 0.8334 0.8316 0.8301
Pr = 1 1.0000 1.0000 1.0000 1.0000 1.0000

Table 2. Calculation results for compressible flat-plate boundary layer flow (ω = 0.75).

flow. More detailed consideration of compressibility effects appears to be meaningful
only if the temperature dependence of specific heat and Prandtl number are taken
into account as well (cf. Van Driest 1959).

5. Some remarks on three-dimensional flow effects
The increased complexity of heat transfer in three-dimensional flow prevents a

rigourous analytical approach of this matter in general, apart from degenerate three-
dimensionality such as occurs in axisymmetric and infinite swept geometries (Sto-
janovic 1959; Reshotko & Beckwith 1958). Possibly the only significant analytical
landmark to be claimed here is the fact that the Crocco integral may be readily
extended to three-dimensional boundary layers, under the same conditions of unity
Prandtl number and zero surface heat and mass transfer, but allowing variable
properties, to read (White 1991)

h = he + 1
2
(q2
e − q2) (5.1)
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where q2 = u2 + w2 is representative of the total main velocity vector, with w the
additional velocity component in the spanwise z-direction.

As far as the effect of Prandtl number is concerned, no attempt is known to
the author of any strict proof that the expression for the recovery factor r = Pr1/2

should be applicable to three-dimensional flow as well, not even in the case of
constant-property flow. On the contrary, the strict validity of this dependence in the
asymptotic sense that was found for two-dimensional flow is not present in the case
of three-dimensional flow, as illustrated by the example for yawed wedge flow that
will be considered below. This generalization, therefore, appears to be no more than
a fortuitous approximate result, supported only by discrete data of numerical or
experimental investigations of particular three-dimensional flow fields.

An ad hoc modification of the Crocco integral for non-unity Pr in three-dimensional
flow commonly takes the form of including a recovery factor r in (5.1) in the same
form as expressed by (1.3), i.e. replacing u in the expressions for two-dimensional flow
by q in three-dimensional flow.

No logical extension of the ‘complete’ Crocco integral introduced in the present
study appears to be possible. Although the same method of replacing u by q may be
suggested, there is no fundamental justification for it. The underlying physical expla-
nation is that for three-dimensional conditions a local integral energy requirement of
the type of equation (1.6) is absent in general. Instead, the energy equation for an
adiabatic wall integrates to

∂

∂x

∫ δ

0

ρu(H −He)dy +
∂

∂z

∫ δ

0

ρw(H −He)dy = 0. (5.2)

This can be considered as a transport expression of the total amount of enthalpy
defect present in the boundary layer, in accordance with the parabolic nature of
the boundary layer equations. In two-dimensional flow the total boundary layer
enthalpy defect is propagated only in a single dimension, hence in the absence of
heat transfer its value must be the same at every x-position, as expressed by (1.6).
In three-dimensional flow this is no longer the case, as enthalpy can be distributed
by propagation in two dimensions. Only when Pr = 1 are the enthalpy transport
by thermal diffusion and viscous work locally in balance, everywhere in the flow. As
a result the total enthalpy is convected with the flow, and hence remains constant
along streamlines, as is expressed by the original Crocco relation being valid for
variable-property three-dimensional flow in general.

5.1. Yawed constant-property wedge flow

As an example of three-dimensional flow, albeit with a degenerate three-dimension-
ality, let the similarity solution be considered that applies to yawed infinite wedge
flow. These flows are obtained by adding to the external flow a homogeneous flow of
constant velocity we in the spanwise z-direction, whereas x is measured perpendicular
to the leading edge. In this respect especially the yawed stagnation flow has significant
practical relevance to the flow near the attachment line of swept wings.

The velocity problem was treated by Cooke (1950) for incompressible flow. For
compressible flow Crabtree (1954) considered the solution for Pr = 1, while the case
of arbitrary Pr was reported by Reshotko & Beckwith (1958).

For constant-property flow the governing transformed equations for x- and z-
momentum and for energy are obtained under the same transformation as for the
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θ(0)
f′′(0) g′(0) (Pr = 0.7) c0 c1 c2 c3 c4

m = 0 0.4696 0.4696 0.8357 1.0000 0.5000 −0.1345 0.0655 −0.0399
m = 0.1 0.6696 0.5042 0.8403 1.0000 0.4847 −0.1342 0.0664 −0.0409
m = 0.25 0.8544 0.5300 0.8436 1.0000 0.4739 −0.1339 0.0670 −0.0415
m = 0.5 1.0389 0.5515 0.8462 1.0000 0.4651 −0.1335 0.0674 −0.0421
m = 0.75 1.1534 0.5631 0.8476 1.0000 0.4604 −0.1333 0.0677 −0.0424
m = 1 1.2326 0.5705 0.8485 1.0000 0.4573 −0.1332 0.0678 −0.0426

Table 3. Calculation results for constant-property yawed infinite wedge flow.

non-swept wedge flow, yielding

f′′′ + ff′′ + β(1− f′2) = 0, (5.3)

g′′ + fg′ = 0, (5.4)

θ′′ + Prfθ′ = −2Prg′2, (5.5)

where f′ = u/ue, g = w/we and θ = 2(h− he)/q2
e . The additional boundary conditions

applying to g are g(0) = 0 and g(∞) = 1. The similarity in the energy equation has
been achieved by neglecting u with respect to w in the kinetic energy, i.e. restricting
the problem to the vicinity of the attachment line, so that qe ≈ we. As this requires
ue to vanish near the attachment line, the analysis applies to β > 0. However, this
restriction need not be made for the flat-plate case β = 0, where with g ≡ f′ direct
similarity is obtained for q2

e = u2
e +w2

e . The analysis may therefore be considered valid
for β > 0.

Applying a similar asymptotic solution method as in the non-swept case, by writing
θ(η) in the form of (2.6), the following result is obtained for the subsequent terms of
the asymptotic expansion:

θ′′0 + fθ′0 + 2g′2 = 0, (5.6)

θ′′1 + fθ′1 = θ′′0 , (5.7)

or, in general (for i > 1)

θ′′i + fθ′i = Gi (5.8)

with Gi = θ′′i−1 − Gi−1. Results of numerical solutions for different values of the
pressure-gradient parameter m have been collected in table 3. The pressure gradient
is seen to have a notable effect on c1, with the value for the stagnation-line solution
(m = 1) in agreement with the approximation r = Pr0.46 obtained by Reshotko &
Beckwith (1958).

From the above results it becomes obvious that the approximation r = Pr1/2

does not possess the same universal validity in three-dimensional flow as it does in
two-dimensional flow. Note that even the degenerate three-dimensionality of infinite
swept flow, where as a result of the vanishing of the z-derivatives the integral energy
relation of (5.2) is reduced to the two-dimensional form of (1.6), does not reproduce
this relation.

6. Conclusions
The extension of the Crocco integral for Prandtl numbers different from unity was

investigated. A fundamental objection to the common extension, obtained by applying
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a constant recovery factor in the entire boundary layer, was pointed out, namely that
it violates the conservation-of-energy principle.

Based on an investigation of self-similar boundary layers in two-dimensional
constant-property flow, a relation was established between the enthalpy and ve-
locity fields, that provides the correct first-order asymptotic description of the Pr
effect. In addition to the ‘recovery term’ it contains a second term resulting from
the redistribution of energy over the boundary layer. Being an asymptotically correct
truncation of the full solution, it is complete in the sense that it satisfies the integral
energy requirement dictated by conservation principles. The result can be generalized
in that it provides a valid first-order solution for constant-property flow in general
and in the presence of weak compressibility effects.

This expression is evidently more complex than the simple classic modified Crocco
integral, where the enthalpy is related directly to the local flow velocity. However, such
a direct relation cannot be expected to possess strict validity, unless heat conduction
and viscous work are locally in balance, as is the case only for Pr = 1. The extended
Crocco integral derived in the present study expresses the local enthalpy in terms of
the complete velocity profile at a given location. The underlying physical principle
for this is the one-dimensional propagation of the ‘total boundary layer enthalpy
defect’ that occurs in two-dimensional flow. This directly suggests that an extension
of this result to three-dimensional boundary layers with the same general validity, i.e.
relating the local enthalpy and velocity profiles, is not possible except for the trivial
case Pr = 1.

In addition to the asymptotic expression for the Crocco integral, asymptotic
solutions have also been obtained for the recovery factor for various classes of
flows. This shows that the expression r = Pr1/2 is asymptotically correct to first
order for two-dimensional constant-property flow in general, and approximately
so for weak compressibility effects. For three-dimensional flow it can only be
approximate, even for constant-property flow, as shown by the example of the
class of swept wedge flows, where a distinct pressure-gradient effect on r was
observed.
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